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A recently developed integrative framework proposes that the vulnerability of a species to environ-
mental change depends on the species’ exposure and sensitivity to environmental change, its resilience
to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural,
physiological and genetic data. With this information in hand, biologists can predict organisms most at
risk from environmental change. Biologists and managers can then target organisms and habitats most
at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available.
Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available
for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are
lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation
and adaptation may interact to influence vulnerability over time. After considering this model together
with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms
sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be
exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to
warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects
for tropical forest ectotherms appear grim.
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1. INTRODUCTION
Climate warming presents major challenges to organ-
isms [1,2]. Consequently, biologists are endeavouring
to develop robust ways to evaluate the differential vul-
nerability of organisms to climate change [3–10] and
then to evaluate and implement management strategies
tailored for species judged most at risk [11].

Attempts to evaluate vulnerability and to develop
management strategies should be based on relevant
biological foundations. Williams et al. [5] developed
an integrative framework for assessing traits that
promote vulnerability. They proposed that the vulner-
ability of a species depends on its sensitivity to
environmental change, its exposure to that change, its
resilience or ability to recover from perturbations and
its potential to adapt to change. That framework is
appealing, but implementing it will be challenging
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tribution of 13 to a Theme Issue ‘Conservation physiology:
ng physiological mechanisms with ecology and evolution to
esponses of organisms to environmental change’.

1665
because each of these vulnerability traits requires
extensive biological information.

Here, we address implementation of that model.
We begin by reviewing how and why the above factors
influence organismal vulnerability [5]. Then we outline
the biological data necessary to evaluate each factor.
However, because such data are rarely available, we
suggest and evaluate ‘quick-and-dirty’ proxies. We
focus on terrestrial organisms, especially ‘dry-skinned’
ectotherms such as lizards or insects, for which the criti-
cal data (natural history, physiology, behaviour) are
relatively rich. We do not discuss aquatic organisms,
for which temperature impacts are complicated by inter-
actions with O2, CO2 and salinity [12–14], intertidal
organisms, which live in rapidly fluctuating environ-
ments and sometimes have few options for behavioural
thermoregulation [14–17], and ‘wet-skinned’ organ-
isms such as amphibians, where temperature impacts
are complicated by sensitivity to moisture [18] and to
fungal infections [19].

Many aspects of climate are changing in diverse
environments, but we focus on the direct effects of
increased air temperature (Ta) on the thermal biology
This journal is q 2012 The Royal Society
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Figure 1. (a) Thermal fitness (performance) curve for a hypothetical ectotherm, with key descriptive parameters CTmin,
CTmax, tolerance range, performance breadth and optimal temperature (To) identified (adapted from Huey [48]). (b) With
climate warming, realized Tb distributions can shift higher. If warming results in Tb that are closer to To of a species (for
example Tb shift from A to B), then warming should enhance fitness; but if warming raises Tb above To (e.g. if Tb shifts

from B to C), fitness will be reduced (see text). (c,d) Step increases in Tb distributions from warming can have much
bigger effects on (c) thermal specialists than on (d) thermal generalists.
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of terrestrial animals, especially ectotherms. Changes
in environmental temperature are the most direct
and predictable outcome of increased greenhouse gas
emissions [2]. Such changes can alter body tempera-
tures (Tb) of ectotherms, and thus their physiological
performance and vulnerability [8,10,20–24], or heat
loads on endotherms [25–28], and thus their energy
and water balances.

An organism’s vulnerability also depends on factors
other than temperature (e.g. disease, food, rainfall,
cloud cover, CO2 and O2) as well as on additional
stressors (e.g. habitat destruction and fragmentation,
fire, pollutants, invasive species) that can interact
with climate warming [7,29–39]. Furthermore, no
organism is an ecological island; and so its vulner-
ability will also depend on how climate change alters
its interactions with competitors, predators, parasites,
diseases and mutualists [9,17,40–45]. Despite these
complexities, attempts to understand an organism’s
vulnerability to climate warming must build from a
robust understanding of its sensitivity and response
to temperature.
2. PHYSIOLOGICAL SENSITIVITY
(a) Physiological traits dictating sensitivity

A thermal ‘performance’ or ‘fitness’ curve serves as a
convenient descriptor of how a change in body temp-
erature (Tb) influences physiological sensitivity and
fitness of ectotherms [22,46,47]. Very low and high
Tb reduce an ectotherm’s performance and can be
lethal in the extreme: these endpoint Tb are called
Phil. Trans. R. Soc. B (2012)
the ‘critical temperatures’ (figure 1a; CTmax, CTmin).
Within those critical limits, performance reaches a
maximum at an optimal temperature region (To),
and then typically plummets at higher Tb [46,49,50].
Thermal performance curves can, however, shift
somewhat depending on the trait, acclimation and
time of temperature exposure [48,51–53].

An organism’s integrated performance or fitness over
some time interval depends on its performance curve,
weighted by the Tb it experiences during that interval
[22,50,54–56]. Thus, the physiological impact of warm-
ing depends primarily on an organism’s field Tb (at the
commencement of warming) relative to its To. If pre-
warming Tb is less than To (‘A’ in figure 1b), then
warming-induced increases in Tb will enhance fitness. If
pre-warming Tb are similar to To (‘B’ in figure 1b), then
modest warming will have little impact (at least initially);
but if Tb rises significantly above To (‘C’ in figure 1b), then
warming should cause catastrophic effects, because
fitness drops rapidly at Tb greater than To.

Sensitivity to climate warming also depends on
whether a species is a thermal generalist or specialist
[6,47,49,54,57,58]. A given increase in Tb from warm-
ing will usually have a larger impact on a thermal
specialist (figure 1c) than on a thermal generalist
(figure 1d).

In contrast to ectotherms, most endotherms (birds
and mammals) are homeothermic and use behavioural,
morphological and, especially, physiological adjust-
ments to maintain a high and relatively constant body
temperature (approx. 35–408C being the ‘set-point’)
under diverse environmental conditions [59,60].

http://rstb.royalsocietypublishing.org/
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Figure 2. Effects of environmental temperature on rates of

metabolic heat production (red) and of evaporative water
loss (blue) of endotherms. At low environmental tempera-
tures, energy expenditures and thus heat production are
elevated to balance heat loss. At high ambient temperatures,

rates of evaporative water loss are elevated to dump excess
heat. Indicated are the thermal neutral zone (TNZ), and
the lower (LCT) and upper (UCT) critical temperatures,
beyond which metabolic rates increase.
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Endotherms with body temperatures only a few degrees
below or above the set-point temperature range can be
physiologically stressed [28]. Most endotherms can
be thus considered extreme thermal specialists (with
respect to Tb).

When exposed to changing environmental tempera-
tures, endotherms typically defend body temperature
(figure 2). For example, if environmental tempera-
ture falls below an endotherm’s ‘thermoneutral zone’
(TNZ), a ‘comfort zone’ within which endotherms
can maintain a low metabolic rate, endotherms increase
metabolic heat to offset increased heat loss. But if
environmental temperatures rise above the TNZ,
endotherms usually defend their set-point temperature
primarily by increasing rates of evaporative cooling
(panting, sweating). Temperatures bounding the TNZ
are called the ‘lower critical temperature’ (LCT) and
‘upper critical temperature’ (UCT). The width and pos-
ition of the TNZ partly reflect measurement conditions,
but mainly reflect the size, shape and pelage of the
endotherm, and its ability to control heat loss through
postural adjustments, fur or feather erection and altered
blood flow [26,61].

Finally, thermal sensitivities of both ectotherms and
endotherms can shift somewhat depending on its
recent or anticipated environmental experience [62].
(Such phenotypic plasticity of physiology is often
called ‘acclimatization’ (for natural shifts) or ‘acclim-
ation’ (for shifts in laboratory studies).) In ectotherms,
for example, recent exposure to elevated temperatures
sometimes enhances thermal performance at higher
temperatures ([63], but see [64,65]). Such ‘beneficial’
acclimation [64] can help buffer physiological impacts
of climate change (figure 3a) [22,57,62,66,67] rela-
tive to the case of limited acclimation (figure 3b).
Endotherms can also acclimatize, sometimes by
changing insulation or posture [26]. They can also
shift their ‘set-point’ body temperatures: torpor and
hibernation are extreme cases.
Phil. Trans. R. Soc. B (2012)
(b) Which organisms are physiologically

sensitive to climate warming?

The above considerations suggest indicator traits that
may predict species most vulnerable to climate warm-
ing: specifically, vulnerable species are likely to be
thermal specialists, to be active at Tb that are near
(or even above) To [6,9,68,69] and to have limited
capacity to acclimatize to changing Tb. Where geo-
graphically do such organisms typically occur? In a
seminal paper, Janzen [57] predicted that thermal
specialists and species with limited acclimation
capacity should occur in the lowland tropics because
temperature variation (daily or seasonal) is relatively
limited there.

Janzen’s prediction was largely based on intuition,
but has been supported subsequently by empirical
studies on diverse ectotherms [6,37,70–75]. Indeed,
tolerance ranges (figure 1a) increase with latitude in
many taxa including frogs [76], insects [77,78] and
lizards (figure 4) [37,68,79]. Interestingly, the
increased tolerance range at high latitude consistently
results from a much greater shift in CTmin than in
CTmax [37,68,74,76,77,79], probably because mini-
mum yearly (ambient) temperatures drop rapidly
with latitude, whereas maximum yearly temperatures
are relatively independent of latitude (except at
extreme latitudes [37,72,77,80]).

Although the tolerance range (CTmax–CTmin)
is relatively narrow for most tropical ectotherms
(figure 4), thermal performance breadth (figure 1a)
for sprinting is surprisingly independent of latitude in
lizards [79], at least at high performance levels (e.g.
85% of maximum). Whether this holds for other
ectotherm performance traits needs to be determined.

Comparative levels of thermal specialization in
endotherms are not as well described as those of
ectotherms. The width of the TNZ (figure 2) is a poten-
tial index of endotherm thermal specialization; but we
see two concerns here. First, laboratory measurements
of TNZ are sensitive to the specific experimental con-
ditions, which will differ from the field [26]. Second,
TNZ itself is rarely measured. Even so, the width of
the TNZ should be (roughly) inversely proportional to
the LCT (figure 2) simply because the UCT (figure 2)
appears much less variable than the LCT [81]. Hence,
we focus our discussion on LCT.

In a pioneering paper, Scholander et al. [61] showed
that the LCT of tropical mammals was much higher
than that of non-tropical species (figure 5), primarily
because they had less dense and less deep pelage. Thus
TNZ is directly related to latitude, such that tropical
species have a relatively narrow TNZ. Nevertheless, the
impact of climate warming on endotherms in warm
environments should be more sensitive to the UCT than
to the LCT. However, because interspecific (or phenoty-
pic) variation in UCT appears minor [81], endotherms
may have limited capacity to shift UCT by physiologi-
cal or morphological adjustments. Torpor may be an
endotherm’s primary way of dealing with stressfully
warm environments [83], even in the tropics [84].

Janzen [57] also predicted that tropical organisms
would have limited acclimatization capacities (figure 3b).
Evidence for ectotherms is limited but is generally consist-
ent with this expectation (reviewed in [72,75], but see
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Figure 3. Acclimatization to low (blue dotted line) versus high (red dotted line) Tb (simulating an acute climate shift) some-
times induces a phenotypic shift in an ectotherm’s thermal fitness curve. (a) Depicts an ectotherm with marked acclimatization
capacities. Its elevated To (red) provides some physiological buffering against climate warming (‘Beneficial Acclimation’). (b)
Shows an ectotherm with a relatively limited response. If its Tb is elevated by climate warming (red dotted line), its
performance will decline.
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[85]). One counterexample involves a tropical crocodile,
in which sustained swimming speed showed perfect com-
pensation for acclimation temperature [63]. In contrast,
diving metabolic rate did not compensate adequately in
another tropical crocodile [86]. Also, a recent study
shows rapid cross-generation acclimation of aerobic
scope to temperature by a tropical reef fish [87].

Comparative (latitudinal) evidence for endotherm
acclimation capacities is even more scanty. One relevant
index could be the magnitude of seasonal or environ-
mental shifts in the position or width of TNZ [88,89],
especially shifts of UCT. However, we know of no com-
prehensive review on this topic. Clearly, a comprehensive
analysis and review of acclimatization responses of tropi-
cal versus temperate zone species (ectotherms and
endotherms) to warming temperatures is needed.

(c) Quantifying physiological traits and proxies

Ideally, one should measure the full thermal sensitivity
(figure 1a) of fitness or of key functional traits (see
fig. 6 in [47]) [48,90,91] of the ectotherm of interest.
Phil. Trans. R. Soc. B (2012)
Moreover, the particular performance traits selected
should be tailored to the ecology of the species under
study [46] but generally might include sprint speed,
prey capture ability, development time, reproductive
rate, growth rate or net energy gain [46,56,91,92].
Performance of such traits can be linked to survival
and fitness [93–96], but establishing links among ther-
mal performance curves, environmental variation and
fitness is challenging [97]. For some species with
short generation times, one can measure the thermal
sensitivityofDarwinian fitness (e.g. intrinsic rate of popu-
lation growth or net reproductive rate [51,98–102]),
but the relevance of different fitness measures is
demography-dependent [51].

Importantly, performance curves depend to some
extent on experimental methodology [53]. This is appar-
ent in estimates of CTmax, which can vary with heating
rate [103–105] or with the specific index of CTmax

[106,107]. Thus, caution is appropriate when compiling
data from independent studies [37,68,108,109], though
the biological signal is often large enough to swamp
these issues, at least in some taxa [68,110].

Because measuring a full thermal performance curve
of an ectotherm is often impractical, a search among
available proxies (e.g. critical temperatures, figure 1a)
might provide climate workers with robust clues as to
the position and shape of a species’ performance
curve. The thermal dependence of sprint speed has
been quantified for many lizards and thus offers an
opportunity to evaluate the ability of several potential
proxies to predict To for sprint speed [68]. We find
that CTmax, mean Tb of lizards active in the field, and
preferred body temperature in laboratory thermal gradi-
ents all predict To, at least roughly (figure 6a–c).
However, CTmin and mean maximum daily tempera-
ture in summer do not (figure 6d,e). Nevertheless,
considerable scatter is evident, even for the significant
proxies (figure 6a–c); and this scatter may reflect phylo-
genetic influences [111], methodological differences
[103] or experimental error. Therefore, these indi-
ces should be used with caution [112]. Furthermore,
even significant relationships are not scaled 1 : 1
(figure 6a–c), and so regression approaches will be
required to predict To from proxies.

http://rstb.royalsocietypublishing.org/
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The thermal dependence of metabolic rate also
provides opportunities to quantify thermal endpoints.
Metabolic rate increases exponentially with tempera-
ture, but eventually plateaus and then drops as an
animal approaches a critical or mortal temperature
[113]. Lighton & Turner [114] showed with ants
that the temperature at which metabolic rate starts
to drop correlates closely with the temperature at
which locomotion ceased. Similarly, the upper temp-
erature at which metabolic rate starts to drop has
been used to index the onset of temperature stress
in salamanders, and Bernardo & Spotila [115]
argue that the magnitude of that drop is also a
Phil. Trans. R. Soc. B (2012)
physiologically meaningful index of vulnerability to
warming.

For endotherms, potential proxies are currently less
clear. Endotherms have high physiological capacities
to buffer environmental variations [60], but are not
immune to extreme heat waves [38,116,117], which
may increase in frequency, intensity and duration as
climate warms [118]. For endotherms facing such
conditions, perhaps the UCT (figure 2)—or perhaps
ambient temperature at the onset of panting—might
be useful proxies of risk. However, we know of
no recent comparative study that quantifies these
temperatures as a function of latitude or climate.

http://rstb.royalsocietypublishing.org/
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Body size will undoubtedly affect endotherm vul-
nerability, but its roles are complex [26]. For
example, large endotherms will have thermal inertia
and greater reserves (e.g. fuel and water), and thus
should have longer survival times during extreme
heat waves [117]; but small endotherms may have
more thermoregulatory opportunities (e.g. access to
cool burrows or small patches of shade).

Diurnality is an obvious risk factor for endotherms,
as day-active species may be potentially exposed to
high heat loads as well as to water stress [117].
Because these stresses may force them to restrict
activity times [119,120], their energy budgets may be
constrained. As noted above, some endotherms can
escape the heat by becoming torpid during warm
spells [83,84], but only if they have access to cool
retreats (e.g. deep burrows).

Overall, an evaluation of vulnerability proxies for
endotherms requires further investigation. Perhaps
the first step is developing a full mechanistic under-
standing of factors that increase endotherm
vulnerability to warming [26,27].
(d) Estimating relevant environmental

temperatures

Predictions of the physiological impacts of climate
warming on physiology require reliable estimates of
how the distribution of environmental temperatures
will shift with warming. However, climate models [2]
typically predict only mean annual air temperatures.
Unfortunately, mean annual temperatures have limited
physiological relevance because they eliminate within-
site temperature variation (large in temperate zones)
that drives physiological activity and performance
[37,121–123]. Such metrics also completely obscure
chronic or acute thermal events, which sometimes
dominate selection [9,37,52,124,125].

Air temperatures have limited physiological rel-
evance. ‘Operative body temperature’ (Te) is a more
relevant index because Te approximates the equilibrium
Tb of an ectotherm at a given time and place. Te can
differ substantially from air temperature (especially for
large organisms) because Te is determined not only by
air temperatures (convection) but also by radiation,
conduction, evaporation and metabolism [121,126].
Fortunately, biophysical and climate models can be
combined to predict Te in the future [4,8,127].

Te of ectotherms can be estimated in two ways. First,
one can construct physical models that approximate size,
shape and colour of a given animal, implant a thermo-
couple and then measure Te [121,126]. These models
are typically hollow and equilibrate quickly, and the
resulting Te can be within 18C of actual Tb at the same
site [128,129]. (Note: adjustments need to be made
for large ectotherms, which have substantial thermal
inertia [130–132], and amphibians, which can have
high rates of evaporative water loss [18,133]). Second,
one can measure the key environmental variables (e.g.
air temperature, wind speed, radiation) in a particular
micro-environment, as well as animal properties (size,
shape, reflectivity and behaviour), and then use a math-
ematical model to calculate Te [26,121,134]. Given
spatially explicit data on climate and terrain, one can
Phil. Trans. R. Soc. B (2012)
use these latter models to estimate Te at any spot or
time [8,127] or the distribution of Te at a site [128].
These approaches are complementary: physical models
are convenient for mapping microclimate variation on
a fine scale [128,135], whereas mathematical models
enable ‘what if ’ simulations as well as an understanding
of the physical basis of Te [8,26,127].

Estimating environmental heat loads on endotherms
is complicated because endotherms metabolically gen-
erate high internal-heat loads, have insulation and can
achieve high rates of evaporative heat loss. To index ther-
mal stresses on endotherms, biophysical ecologists
[136] estimate ‘standard operative temperature’ (Tes).
As with Te, Tes can be calculated or approximated
using physical models. Heated models are preferred
[136,137], but even unheated ones can provide useful
predictions of activity and behaviour [138]. Standar-
dized heat-generating objects can be placed in
different retreat-sites, such as tree hollows, to assess
the interaction between insulation of the retreat-site
and heat production by the organism [139]. Indeed,
metabolic heat production can be sufficient to cause sig-
nificant heat stress to endotherms inside well-insulated
retreats [139,140].
(e) Behavioural temperature regulation as

a buffer

In most terrestrial habitats, a range of potential Te (or
Tes) exists at any time of day, and that range will shift
over the day and seasons [121]. As has been known
for decades [141,142], mobile animals can behavioural-
ly exploit that thermal heterogeneity and thus control Tb

within relatively narrow ranges. For example, they might
move to a sunny spot (relatively high Te) early in the
morning or late in the afternoon, bask and thus use
solar radiation to drive Tb higher. Then they might
move to shade at midday, avoiding solar radiation and
taking advantage of convective cooling to keep their Tb

from rising excessively. Regulation of time of activity,
posture and retreat-site selection are classic methods
of behavioural thermoregulation [142–145].

Behavioural thermoregulation can thus buffer the
impact of climate warming [8,146,147]. However, be-
havioural thermoregulation is feasible only if the
thermal environment is heterogeneous [8], as evalu-
ated by the distribution of Te [135,148,149]. If all
accessible microhabitats have similar Te, then micro-
habitat selection can have little or no impact on Te

and thus Tb. Thermal heterogeneity is limited at
night and at all times beneath the canopy in heavily
forested areas [128,150], except in clearings and in
sun flecks. Not surprisingly, nocturnal and forest
ectotherms must behaviourally control Tb primarily
by regulating the time of activity (i.e. becoming
active only when Te are suitable). Thermal heterogen-
eity can also be limited even in very open habitats at
midday, when most of the ground surface is fully
exposed to solar radiation [8,135,144].
(f) Complications from diverse life-cycle stages

Terrestrial ectotherms typically have a sessile egg stage
and mobile juvenile and adult stages. Many insects
have more complex life cycles: their stages (eggs,

http://rstb.royalsocietypublishing.org/
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larvae, pupae, adults) can live in dramatically different
habitats and can differ in vagility [125,151]. For
instance, a butterfly may have a sessile egg phase on
one host plant, a motile larval phase on the same plant,
a sessile pupal phase in the soil and a flying adult
phase. Each life-cycle stage may thus experience dif-
ferent thermal environments (especially if stages are
non-overlapping in time [152]) and may even have
quite different thermal sensitivities and behavioural
options [125,151,153–157]. For such species, predic-
tions of the impact of climate warming thus require
consideration of the vulnerability of each life-cycle
stage [52,125,158], especially on development [47].

Sessile stages (especially eggs) are incapable of
behavioural buffering (but see [159]). Yet the thermal
environment of embryos (e.g. eggs) can have a major
effect on subsequent survival, development rates, adult
size and morphology, physiological capacities, and even
gender [22,127,160–163]. Although eggs cannot
move, the mother’s choice of the oviposition site may
provide some buffering ([127,161,164–166], but see
[167]). For example, a female can control the thermal
conditions her eggs will experience simply by altering
the depth of her nest or its shading [127,161,168,169],
by changing season of laying [170,171] or by using buf-
fered microhabitats such as termite mounds [172] or
transpiring leaves [166]. Even so, females can only
potentially choose from among the available tempera-
tures, which may not be suitable [127,161]. Egg
retention and viviparity can also enable a female to
control the thermal environment of her embryos [173].

(g) Genetic responses to climate warming

If climate warming increases Tb, such that performance
and fitness is reduced (b to c in figure 1b), selection will
favour genotypes that perform relatively well at higher
temperatures [9,52,56,174–176]. If the selective
response can keep pace with the change in Tb, overall fit-
ness will not be affected dramatically by climate change
[52,58,124,176–179]. Furthermore, gene exchange
between genetically differentiated populations may
enable persistence [10].

Modelling selection and the response to selection
on thermal sensitivity is complex [9,52,56,58,67,177,
179–181], but we can summarize factors that will be
influential. The simple response to selection is charac-
terized in the familiar ‘breeder’s equation’ response ¼
(selection differential) � (heritability). Response will
be relatively fast in species that have short generation
times, pronounced heritable variation in thermal sensi-
tivity, large population size, limited inbreeding and
thermally specialized physiologies [58,67,180,181].
Unfortunately, the genetic architecture of ectotherm
thermal sensitivity is largely unknown, but recent
studies suggest that some lizards [9] and even some
Drosophila [52] have limited capacity to keep pace
with warming. We return to genetic issues below.
3. TEMPORAL RESPONSES TO
CLIMATE WARMING
We are now in a position to evaluate the temporal pat-
tern of the impact of global warming on an organism.
We focus on a case in which an ectotherm initially lives
Phil. Trans. R. Soc. B (2012)
in an environment where most Te are initially at or near
To (‘B’ in figure 1b). Thus, any warming can poten-
tially reduce performance and fitness.

Whether warming does reduce fitness depends in part
on the organism’s capacity for behavioural buffering and
acclimatization, as noted above. An appreciation that be-
haviour can buffer environmental change traces to
Charles Bogert ([182], see also [183]), and is called
the ‘Bogert Effect’ [146]. Consider two extremes. If a
species has well-developed capacity for behavioural
thermoregulation (or for acclimatization) and if it lives
in a thermally heterogeneous environment, then it can
achieve Tb near To for an extended period of warming
before reaching the limits of behavioural buffering
(figure 7, black line). In other words, it evades the
force of selection for some time. However, if warming
continues, it will eventually reach the limits of behaviour-
al buffering, and its Tb will rise significantly above To. Its
survival will then depend on its capacity to respond to
selection (black dashed line). Alternatively, if a species
lives in a thermally homogeneous environment and
thus has limited opportunities for behavioural com-
pensation (figure 7, grey dotted line), its Tb will soon
be forced above To. Consequently, it will rapidly experi-
ence selection for increased heat tolerance [151]. (Note:
the impact of Tb shifts will also depend on an organism’s
acclimatization capacity [67] and on the availability
of water, which provides a physiological buffer via
evaporative cooling.)

We canalso consider the temporal pattern of warming-
induced changes in Tb for a species that is initially living
in an environment in which Te are generally less than
To (‘A’ in figure 1b), as may apply to many high-latitude
ectotherms [6,8,180]. As warming proceeds, a ther-
moregulating animal will generally select the warmest
available microenvironments, and consequently its Tb
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and thus its fitness may increase as Te increase [6,8].
But once Te begin to exceed To, the animal will begin to
pick the coolest microenvironments; thus behavioural
buffering will reduce the rate of fitness decline rela-
tive to the rate of change in the thermal environment
(figure 6) by the Bogert Effect. In other words,
behaviour allows organisms living in cool environments
not only to take advantage of the initial stages of
warming, but then potentially to use behaviour to evade
further warming.

What kinds of terrestrial animals have limited
capacities for behavioural buffering? As noted above,
these will be species living in thermally homogeneous
environments. They are typically (below-canopy) forest
species living in the lowland tropics. These ectotherms
may be additionally vulnerable because they have limited
acclimatization capacities [72], low heat tolerance
[68,78,184] and already live in environments that are
warm relative to To [6,47,68,123,185,186]. Their vul-
nerability will only be exacerbated if climate change
induces a dieback of tropical forests [187].

The proposal that many tropical ectotherms are
vulnerable to warming [6,8,9,47,68,123,186,188] has
been challenged recently. For example, Hoffmann
[52] and Clusella-Trullas et al. [37] have suggested
that selection on heat tolerance is dominated by extreme
events, which were supposedly ignored in prior studies
[6,68] and which can sometimes be accentuated in
mid-latitude areas [15,52]. We agree that extreme temp-
eratures will sometimes be important, but demographic
persistence may often be governed by warming-induced
energetic limitations. Sinervo et al. [9] discovered that
extinctions of lizard populations were correlated with
spring warming, not summer warming. They proposed
that spring warming led to a demographic collapse by
reducing foraging time and energy gain of females
during the critical breeding season, even though spring
temperatures are far from extreme. Undoubtedly,
both extreme events and demographic collapse are
important; and further work should be focused on
establishing their relative importance.

In a large comparative analysis, Clusella Trullas
et al. [37] found that preferred body temperatures of
reptiles have stronger correlations with rainfall than
with air temperature variables. They suggested that
increased tropical rainfall or cloud cover will mitigate
the impact of warming on tropical ectotherms
[37,39]. We agree but note that current predictions
about rainfall have high uncertainty [187].

Third, all authors agree that ectotherms from
mid-latitudes—not just ones from the tropics—are also
vulnerable. In particular, mid-latitude desert species
live in extreme environments [8,135], can have negative
thermal safety margins (fig. 2 in [68]), be in negative
energy balance [9] and are thus at risk of stress and
extinction [8,21]. Indeed, lizard extinctions have
already been observed at mid-latitude sites [9].

Predicting geographical patterns of ectotherm
responses to climate change is difficult, as the number
of involved biological factors—and the environmental
uncertainties—is large. Extinctions will occur widely
[9]. Even so, the total biotic impact of climate warming
may probably be largest in the tropics, because that is
where most ectotherms live [6,185].
Phil. Trans. R. Soc. B (2012)
(a) Asymmetry of biotic interactions

Our paper has thus far focused on impacts of warming on
single species, but warming will also affect biotic inter-
actions among species, greatly complicating predictions
of warming impacts [17,44,45,124,189]. Importantly,
the impact of climate warming may be decidedly asym-
metric on warm- versus cold-adapted species. Consider
a tropical locality with both forest-habitat and open-
habitat lizards. Forest lizards typically encounter warm
(but not hot) Te, are usually thermoconformers (except
species that use sun flecks) and typically have low To

and CTmax relative to open-habitat species [68,184].
Prior to climate warming, Te inside lowland forests can
be ideal (i.e. near To) for lowland forest species
[48,148], but may be too cool for the open-habitat
species, which have higher To [190]. Because thermore-
gulatory options are limited for forest species (above),
climate warming will necessarily increase Te and thus
Tb: if so, heat stress is inevitable. However, that same
rise in Te will make the forest increasingly suitable for
the open-habitat species. If warming continues, the
open-habitat species will be able to invade the forest, at
least at warm times of the year [68]. They may even
begin to use the forest as a thermal refuge.

The forest species is thus likely to be in ‘double
trouble’: warming will not only induce heat stress,
but also induce increased biotic stress [68]. This com-
bination could induce strong selection on thermal
sensitivity of the forest species, but might nonetheless
overwhelm their adaptive capacities. If so, tropical
forest species are at amplified risk from warming.

These suggestions assume that forest structure and
other environmental variables will be unaffected by
warming, such that the rise in Te beneath the canopy
is driven only by Ta. However, climate warming may
reduce plant productivity and growth by increasing
respiratory costs relative to photosynthetic gains (but
see [33,187,191,192]). If this causes canopies to
open, solar radiation will penetrate and raise Te even
further [193]. Moreover, humidity will drop, adding
novel water stress to the woes of forest animals,
especially those that are moisture-sensitive [179,194].
The increasing threat of forest disturbance or clearing
[34] and declines in rainfall and cloud cover [124,195]
potentially add another synergistic threat to closed
forest species by opening up the canopy, adding the
cascading threat of drying and fire [29], reducing ther-
mal buffering and refugia, and facilitating invasion by
the open-habitat species.

A similar effect may occur for species arrayed
along an altitudinal gradient. Warming may force
some species to retreat uphill [115,196–200], which
can lead to community disassembly, especially in the
tropics [201]. However, shifts may depend on precipita-
tion regimes as well [202]. As warm-adapted species
move uphill, cold-adapted (thus high-altitude)
species may be exposed to novel competitors as well
as reduced range size, potentially increasing their
extinction risk [9].
4. CONCLUDING REMARKS
We have outlined some of the issues that are relevant to
predictions as to whether climate warming will harm
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or benefit organisms. Physiological information is fun-
damental here [4–6,24,39,124,203,204]: one needs
to know whether a species is a thermal specialist or a
thermal generalist, is warm versus cold-adapted, has
marked acclimation capacities [67] or is sensitive to
other physiological variables [37,52]. One also needs
to know which stage of the life cycle (e.g. eggs versus
adults) is most vulnerable [52,125,202]. Laboratory
estimates of an organism’s thermal sensitivity are
useful in predicting phenotypic effects of warming
(figure 1a), but some proxies for thermal sensitivity
(e.g. CTmax, field Tb) may sometimes be adequate
(figure 6b). Information on operative temperatures
(level and heterogeneity) is also needed to evaluate
whether operative temperatures (at the initiation of
warming) are at or below a species’ thermal optimum
[6] and whether spatial and temporal heterogeneity in
operative temperatures will facilitate behavioural buffer-
ing [8]. We need more insight into whether selection is
driven primarily by extreme events [37,52] or by chronic
pressures [9]. Genetic information [67,124,179] will be
necessary to anticipate whether species are genetically
capable of keeping pace with shifting climates (a ‘Red
Queen’ scenario), or whether they will increasingly lag
behind (a ‘moon-walk’ scenario) and ultimately go
extinct. Genetic approaches require estimates of selec-
tion differentials in nature and of heritabilities for
fitness traits [22,58,67,177,178,181,205]. Unfortu-
nately, those are rarely available [9,51,56,179,181],
making current predictive attempts unreliable. We
have much to learn and little time to work.

Our review reinforces the recent view [5,6,8,68,
185,186,206] that tropical forest ectotherms are at
risk from warming and that they may have limited gen-
etic variation and thus not be able to adapt rapidly
[52,207,208]. If this expectation is correct, then the
ecological impact of climate warming will be devastat-
ing, because tropical forests are the centre of diversity
of most terrestrial ectotherm taxa.

We do not deny that many organisms elsewhere
also appear in trouble from warming [8,9,21,37,52,
68,124]. In fact, many lizard populations outside the tro-
pics may have already gone locally extinct from climate
warming; and many more are projected to go extinct
[9]. Behavioural buffering can help [8,146], but may
only slow or delay the march towards extinction.

This paper emerged from a workshop (‘Predicting climate
change impacts on biodiversity: the way forward’) held in
Daintree, Queensland, Australia (17–21 November 2008).
This workshop was organized by the Centre for Tropical
Biodiversity and Climate Change at James Cook University
and funded by the MTSRF. We thank other participants
for ideas that emerged during discussions, B. Sinervo and
S. Clusella-Trullas for comments, and C. Franklin and
F. Seebacher for the opportunity to participate in this
volume. R.B.H. was supported by NSF grant IBN-
0416843. M.R.K. was supported by an ARC Australian
Research Fellowship DP110101776.
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